Commands
Commands Overview
RedisBloom adds four probabilistic data structures to Redis: a scalable Bloom filter, a cuckoo filter, a count-min sketch, and a top-k. These data structures trade perfect accuracy for extreme memory efficiency, so they're especially useful for big data and streaming applications.
Bloom and cuckoo filters are used to determine, with a high degree of certainty, whether an element is a member of a set.
A count-min sketch is generally used to determine the frequency of events in a stream. You can query the count-min sketch get an estimate of the frequency of any given event.
A top-k maintains a list of k most frequently seen items.
Bloom filters typically exhibit better performance and scalability when inserting items (so if you're often adding items to your dataset, then a Bloom filter may be ideal). Cuckoo filters are quicker on check operations and also allow deletions.
Bloom Filter
Cuckoo Filter
Count-Min Sketch
Top-K
Got questions? Feel free to ask at the RedisBloom forum.
RedisBloom is licensed under the Redis Source Available License Agreement
Commands Overview
"Quick start guide"
RedisBloom has several client libraries, written by the module authors and community members - abstracting the API in different programming languages. While it is possible and simple to use the raw Redis commands API, in most cases it's easier to just use a client library abstracting it.
RedisBloom supports a few run-time configuration options that can be defined when loading the module. In the future more options will be added.